Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improved albedo formulation for chemistry transport models based on satellite observations and assimilated snow data and its impact on tropospheric photochemistry

Identifieur interne : 000175 ( PascalFrancis/Corpus ); précédent : 000174; suivant : 000176

Improved albedo formulation for chemistry transport models based on satellite observations and assimilated snow data and its impact on tropospheric photochemistry

Auteurs : T. Laepple ; M. G. Schultz ; J. F. Lamarque ; S. Madronich ; R. E. Shetter ; B. L. Lefer ; E. Atlas

Source :

RBID : Pascal:05-0325164

Descripteurs français

English descriptors

Abstract

[1] Present parameterizations of the UV surface albedo in global chemistry transport models are generally based on a crude land cover classification and do not account for interannual variations of the snow-covered surface or the large variability in the albedo of snow-covered surfaces. We developed an improved scheme based on 2 years of Moderate-Resolution Imaging Spectroradiometer (MODIS) albedo data, a fine-resolution MODIS land cover map, Global Ozone Monitoring Experiment (GOME) albedo data, and daily assimilated snow cover maps from the European Centre for Medium-Range Weather Forecasts or the National Centers for Environmental Prediction. The new parameterization improves the calculation of photolysis frequencies in particular in the subarctic region as shown by a comparison of the calculated ratio of upwelling and downwelling actinic fluxes with spectral measurements from the Tropospheric Ozone Production About Spring Equinox (TOPSE) campaign (January-May 2000). The impact of surface albedo changes on tropospheric photochemistry has been investigated using the global MOZART-2 chemistry transport model. Compared with the original model version, the surface albedo changes alter the tropospheric oxidizing capacity (OH concentrations) between -20 and +200% locally and +5% in the global annual mean. About half of this change results from a new value adapted for the ocean UV albedo. Locally, NOx concentrations were found to decrease by up to 40% and were most pronounced where the snow boundary crosses the high-emission regions in Europe, North America, and Asia. The interannual variability of snow and sea ice cover can lead to changes in the global tropospheric OH-concentration of 0.5%, which is of similar magnitude compared with the impacts of varying water vapor, transport, ozone column, and emissions as discussed in previous studies.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 110
A06       @2 D11
A08 01  1  ENG  @1 Improved albedo formulation for chemistry transport models based on satellite observations and assimilated snow data and its impact on tropospheric photochemistry
A11 01  1    @1 LAEPPLE (T.)
A11 02  1    @1 SCHULTZ (M. G.)
A11 03  1    @1 LAMARQUE (J. F.)
A11 04  1    @1 MADRONICH (S.)
A11 05  1    @1 SHETTER (R. E.)
A11 06  1    @1 LEFER (B. L.)
A11 07  1    @1 ATLAS (E.)
A14 01      @1 Max Planck Institute for Meteorology @2 Hamburg @3 DEU @Z 1 aut. @Z 2 aut.
A14 02      @1 Atmospheric Chemistry Division, National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut.
A20       @2 D11308.1-D11308.12
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000132267420320
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 44 ref.
A47 01  1    @0 05-0325164
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] Present parameterizations of the UV surface albedo in global chemistry transport models are generally based on a crude land cover classification and do not account for interannual variations of the snow-covered surface or the large variability in the albedo of snow-covered surfaces. We developed an improved scheme based on 2 years of Moderate-Resolution Imaging Spectroradiometer (MODIS) albedo data, a fine-resolution MODIS land cover map, Global Ozone Monitoring Experiment (GOME) albedo data, and daily assimilated snow cover maps from the European Centre for Medium-Range Weather Forecasts or the National Centers for Environmental Prediction. The new parameterization improves the calculation of photolysis frequencies in particular in the subarctic region as shown by a comparison of the calculated ratio of upwelling and downwelling actinic fluxes with spectral measurements from the Tropospheric Ozone Production About Spring Equinox (TOPSE) campaign (January-May 2000). The impact of surface albedo changes on tropospheric photochemistry has been investigated using the global MOZART-2 chemistry transport model. Compared with the original model version, the surface albedo changes alter the tropospheric oxidizing capacity (OH concentrations) between -20 and +200% locally and +5% in the global annual mean. About half of this change results from a new value adapted for the ocean UV albedo. Locally, NOx concentrations were found to decrease by up to 40% and were most pronounced where the snow boundary crosses the high-emission regions in Europe, North America, and Asia. The interannual variability of snow and sea ice cover can lead to changes in the global tropospheric OH-concentration of 0.5%, which is of similar magnitude compared with the impacts of varying water vapor, transport, ozone column, and emissions as discussed in previous studies.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  2  FRE  @0 Albedo @5 01
C03 01  2  ENG  @0 albedo @5 01
C03 01  2  SPA  @0 Albedo @5 01
C03 02  2  FRE  @0 Transport @5 03
C03 02  2  ENG  @0 transport @5 03
C03 02  2  SPA  @0 Transporte @5 03
C03 03  2  FRE  @0 Modèle @5 04
C03 03  2  ENG  @0 models @5 04
C03 03  2  SPA  @0 Modelo @5 04
C03 04  X  FRE  @0 Observation par satellite @5 05
C03 04  X  ENG  @0 Satellite observation @5 05
C03 04  X  SPA  @0 Observación por satélite @5 05
C03 05  2  FRE  @0 Neige @5 06
C03 05  2  ENG  @0 snow @5 06
C03 05  2  SPA  @0 Nieve @5 06
C03 06  2  FRE  @0 Troposphère @5 07
C03 06  2  ENG  @0 troposphere @5 07
C03 07  2  FRE  @0 Photochimie @5 08
C03 07  2  ENG  @0 photochemistry @5 08
C03 08  X  FRE  @0 Paramétrisation @5 09
C03 08  X  ENG  @0 Parameterization @5 09
C03 08  X  SPA  @0 Parametrización @5 09
C03 09  2  FRE  @0 Monde @5 10
C03 09  2  ENG  @0 global @5 10
C03 09  2  SPA  @0 Mundo @5 10
C03 10  2  FRE  @0 Occupation sol @5 11
C03 10  2  ENG  @0 land cover @5 11
C03 11  2  FRE  @0 Classification @5 12
C03 11  2  ENG  @0 classification @5 12
C03 11  2  SPA  @0 Clasificación @5 12
C03 12  X  FRE  @0 Variation interannuelle @5 13
C03 12  X  ENG  @0 Interannual variation @5 13
C03 12  X  SPA  @0 Variación interanual @5 13
C03 13  X  FRE  @0 Couverture neige @5 14
C03 13  X  ENG  @0 Snow cover @5 14
C03 13  X  SPA  @0 Cubierta nieve @5 14
C03 14  X  FRE  @0 Variabilité @5 15
C03 14  X  ENG  @0 Variability @5 15
C03 14  X  SPA  @0 Variabilidad @5 15
C03 15  2  FRE  @0 Fraction fine @5 16
C03 15  2  ENG  @0 fine-grained materials @5 16
C03 15  2  SPA  @0 Fracción fina @5 16
C03 16  2  FRE  @0 Carte occupation sol @5 17
C03 16  2  ENG  @0 land cover maps @5 17
C03 17  2  FRE  @0 Ozone @5 18
C03 17  2  ENG  @0 ozone @5 18
C03 17  2  SPA  @0 Ozono @5 18
C03 18  2  FRE  @0 Surveillance @5 19
C03 18  2  ENG  @0 monitoring @5 19
C03 18  2  SPA  @0 Vigilancia @5 19
C03 19  2  FRE  @0 Etude expérimentale @5 20
C03 19  2  ENG  @0 experimental studies @5 20
C03 20  X  FRE  @0 Prévision météorologique @5 21
C03 20  X  ENG  @0 Weather forecast @5 21
C03 20  X  SPA  @0 Previsión meteorológica @5 21
C03 21  X  FRE  @0 Constante vitesse @5 22
C03 21  X  ENG  @0 Rate constant @5 22
C03 21  X  SPA  @0 Constante velocidad @5 22
C03 22  2  FRE  @0 Région Subarctique @5 23
C03 22  2  ENG  @0 subarctic regions @5 23
C03 22  2  SPA  @0 Región Subártico @5 23
C03 23  2  FRE  @0 Upwelling @5 24
C03 23  2  ENG  @0 upwelling @5 24
C03 23  2  SPA  @0 Corriente ascendente @5 24
C03 24  2  FRE  @0 Downwelling @5 25
C03 24  2  ENG  @0 downwelling @5 25
N21       @1 227
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 05-0325164 INIST
ET : Improved albedo formulation for chemistry transport models based on satellite observations and assimilated snow data and its impact on tropospheric photochemistry
AU : LAEPPLE (T.); SCHULTZ (M. G.); LAMARQUE (J. F.); MADRONICH (S.); SHETTER (R. E.); LEFER (B. L.); ATLAS (E.)
AF : Max Planck Institute for Meteorology/Hamburg/Allemagne (1 aut., 2 aut.); Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (3 aut., 4 aut., 5 aut., 6 aut., 7 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2005; Vol. 110; No. D11; D11308.1-D11308.12; Bibl. 44 ref.
LA : Anglais
EA : [1] Present parameterizations of the UV surface albedo in global chemistry transport models are generally based on a crude land cover classification and do not account for interannual variations of the snow-covered surface or the large variability in the albedo of snow-covered surfaces. We developed an improved scheme based on 2 years of Moderate-Resolution Imaging Spectroradiometer (MODIS) albedo data, a fine-resolution MODIS land cover map, Global Ozone Monitoring Experiment (GOME) albedo data, and daily assimilated snow cover maps from the European Centre for Medium-Range Weather Forecasts or the National Centers for Environmental Prediction. The new parameterization improves the calculation of photolysis frequencies in particular in the subarctic region as shown by a comparison of the calculated ratio of upwelling and downwelling actinic fluxes with spectral measurements from the Tropospheric Ozone Production About Spring Equinox (TOPSE) campaign (January-May 2000). The impact of surface albedo changes on tropospheric photochemistry has been investigated using the global MOZART-2 chemistry transport model. Compared with the original model version, the surface albedo changes alter the tropospheric oxidizing capacity (OH concentrations) between -20 and +200% locally and +5% in the global annual mean. About half of this change results from a new value adapted for the ocean UV albedo. Locally, NOx concentrations were found to decrease by up to 40% and were most pronounced where the snow boundary crosses the high-emission regions in Europe, North America, and Asia. The interannual variability of snow and sea ice cover can lead to changes in the global tropospheric OH-concentration of 0.5%, which is of similar magnitude compared with the impacts of varying water vapor, transport, ozone column, and emissions as discussed in previous studies.
CC : 220; 001E; 001E01
FD : Albedo; Transport; Modèle; Observation par satellite; Neige; Troposphère; Photochimie; Paramétrisation; Monde; Occupation sol; Classification; Variation interannuelle; Couverture neige; Variabilité; Fraction fine; Carte occupation sol; Ozone; Surveillance; Etude expérimentale; Prévision météorologique; Constante vitesse; Région Subarctique; Upwelling; Downwelling
ED : albedo; transport; models; Satellite observation; snow; troposphere; photochemistry; Parameterization; global; land cover; classification; Interannual variation; Snow cover; Variability; fine-grained materials; land cover maps; ozone; monitoring; experimental studies; Weather forecast; Rate constant; subarctic regions; upwelling; downwelling
SD : Albedo; Transporte; Modelo; Observación por satélite; Nieve; Parametrización; Mundo; Clasificación; Variación interanual; Cubierta nieve; Variabilidad; Fracción fina; Ozono; Vigilancia; Previsión meteorológica; Constante velocidad; Región Subártico; Corriente ascendente
LO : INIST-3144.354000132267420320
ID : 05-0325164

Links to Exploration step

Pascal:05-0325164

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Improved albedo formulation for chemistry transport models based on satellite observations and assimilated snow data and its impact on tropospheric photochemistry</title>
<author>
<name sortKey="Laepple, T" sort="Laepple, T" uniqKey="Laepple T" first="T." last="Laepple">T. Laepple</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schultz, M G" sort="Schultz, M G" uniqKey="Schultz M" first="M. G." last="Schultz">M. G. Schultz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J. F." last="Lamarque">J. F. Lamarque</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Madronich, S" sort="Madronich, S" uniqKey="Madronich S" first="S." last="Madronich">S. Madronich</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Shetter, R E" sort="Shetter, R E" uniqKey="Shetter R" first="R. E." last="Shetter">R. E. Shetter</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lefer, B L" sort="Lefer, B L" uniqKey="Lefer B" first="B. L." last="Lefer">B. L. Lefer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Atlas, E" sort="Atlas, E" uniqKey="Atlas E" first="E." last="Atlas">E. Atlas</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0325164</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0325164 INIST</idno>
<idno type="RBID">Pascal:05-0325164</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000175</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Improved albedo formulation for chemistry transport models based on satellite observations and assimilated snow data and its impact on tropospheric photochemistry</title>
<author>
<name sortKey="Laepple, T" sort="Laepple, T" uniqKey="Laepple T" first="T." last="Laepple">T. Laepple</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schultz, M G" sort="Schultz, M G" uniqKey="Schultz M" first="M. G." last="Schultz">M. G. Schultz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J. F." last="Lamarque">J. F. Lamarque</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Madronich, S" sort="Madronich, S" uniqKey="Madronich S" first="S." last="Madronich">S. Madronich</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Shetter, R E" sort="Shetter, R E" uniqKey="Shetter R" first="R. E." last="Shetter">R. E. Shetter</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lefer, B L" sort="Lefer, B L" uniqKey="Lefer B" first="B. L." last="Lefer">B. L. Lefer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Atlas, E" sort="Atlas, E" uniqKey="Atlas E" first="E." last="Atlas">E. Atlas</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Interannual variation</term>
<term>Parameterization</term>
<term>Rate constant</term>
<term>Satellite observation</term>
<term>Snow cover</term>
<term>Variability</term>
<term>Weather forecast</term>
<term>albedo</term>
<term>classification</term>
<term>downwelling</term>
<term>experimental studies</term>
<term>fine-grained materials</term>
<term>global</term>
<term>land cover</term>
<term>land cover maps</term>
<term>models</term>
<term>monitoring</term>
<term>ozone</term>
<term>photochemistry</term>
<term>snow</term>
<term>subarctic regions</term>
<term>transport</term>
<term>troposphere</term>
<term>upwelling</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Albedo</term>
<term>Transport</term>
<term>Modèle</term>
<term>Observation par satellite</term>
<term>Neige</term>
<term>Troposphère</term>
<term>Photochimie</term>
<term>Paramétrisation</term>
<term>Monde</term>
<term>Occupation sol</term>
<term>Classification</term>
<term>Variation interannuelle</term>
<term>Couverture neige</term>
<term>Variabilité</term>
<term>Fraction fine</term>
<term>Carte occupation sol</term>
<term>Ozone</term>
<term>Surveillance</term>
<term>Etude expérimentale</term>
<term>Prévision météorologique</term>
<term>Constante vitesse</term>
<term>Région Subarctique</term>
<term>Upwelling</term>
<term>Downwelling</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] Present parameterizations of the UV surface albedo in global chemistry transport models are generally based on a crude land cover classification and do not account for interannual variations of the snow-covered surface or the large variability in the albedo of snow-covered surfaces. We developed an improved scheme based on 2 years of Moderate-Resolution Imaging Spectroradiometer (MODIS) albedo data, a fine-resolution MODIS land cover map, Global Ozone Monitoring Experiment (GOME) albedo data, and daily assimilated snow cover maps from the European Centre for Medium-Range Weather Forecasts or the National Centers for Environmental Prediction. The new parameterization improves the calculation of photolysis frequencies in particular in the subarctic region as shown by a comparison of the calculated ratio of upwelling and downwelling actinic fluxes with spectral measurements from the Tropospheric Ozone Production About Spring Equinox (TOPSE) campaign (January-May 2000). The impact of surface albedo changes on tropospheric photochemistry has been investigated using the global MOZART-2 chemistry transport model. Compared with the original model version, the surface albedo changes alter the tropospheric oxidizing capacity (OH concentrations) between -20 and +200% locally and +5% in the global annual mean. About half of this change results from a new value adapted for the ocean UV albedo. Locally, NO
<sub>x</sub>
concentrations were found to decrease by up to 40% and were most pronounced where the snow boundary crosses the high-emission regions in Europe, North America, and Asia. The interannual variability of snow and sea ice cover can lead to changes in the global tropospheric OH-concentration of 0.5%, which is of similar magnitude compared with the impacts of varying water vapor, transport, ozone column, and emissions as discussed in previous studies.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>110</s2>
</fA05>
<fA06>
<s2>D11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Improved albedo formulation for chemistry transport models based on satellite observations and assimilated snow data and its impact on tropospheric photochemistry</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LAEPPLE (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHULTZ (M. G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAMARQUE (J. F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MADRONICH (S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SHETTER (R. E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LEFER (B. L.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ATLAS (E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s2>D11308.1-D11308.12</s2>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000132267420320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>44 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0325164</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] Present parameterizations of the UV surface albedo in global chemistry transport models are generally based on a crude land cover classification and do not account for interannual variations of the snow-covered surface or the large variability in the albedo of snow-covered surfaces. We developed an improved scheme based on 2 years of Moderate-Resolution Imaging Spectroradiometer (MODIS) albedo data, a fine-resolution MODIS land cover map, Global Ozone Monitoring Experiment (GOME) albedo data, and daily assimilated snow cover maps from the European Centre for Medium-Range Weather Forecasts or the National Centers for Environmental Prediction. The new parameterization improves the calculation of photolysis frequencies in particular in the subarctic region as shown by a comparison of the calculated ratio of upwelling and downwelling actinic fluxes with spectral measurements from the Tropospheric Ozone Production About Spring Equinox (TOPSE) campaign (January-May 2000). The impact of surface albedo changes on tropospheric photochemistry has been investigated using the global MOZART-2 chemistry transport model. Compared with the original model version, the surface albedo changes alter the tropospheric oxidizing capacity (OH concentrations) between -20 and +200% locally and +5% in the global annual mean. About half of this change results from a new value adapted for the ocean UV albedo. Locally, NO
<sub>x</sub>
concentrations were found to decrease by up to 40% and were most pronounced where the snow boundary crosses the high-emission regions in Europe, North America, and Asia. The interannual variability of snow and sea ice cover can lead to changes in the global tropospheric OH-concentration of 0.5%, which is of similar magnitude compared with the impacts of varying water vapor, transport, ozone column, and emissions as discussed in previous studies.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Albedo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>albedo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Albedo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>models</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Neige</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>snow</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Nieve</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Photochimie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>photochemistry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Paramétrisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Parameterization</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Parametrización</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Monde</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>global</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Occupation sol</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>land cover</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Classification</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>classification</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Clasificación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Variation interannuelle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Interannual variation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Variación interanual</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Couverture neige</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Snow cover</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cubierta nieve</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Variabilité</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Variability</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Variabilidad</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Fraction fine</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>fine-grained materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Fracción fina</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Carte occupation sol</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>land cover maps</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>ozone</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Surveillance</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>monitoring</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Vigilancia</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Prévision météorologique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Weather forecast</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Previsión meteorológica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Constante vitesse</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Rate constant</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Constante velocidad</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Région Subarctique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>subarctic regions</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Región Subártico</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Upwelling</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>upwelling</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Corriente ascendente</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Downwelling</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>downwelling</s0>
<s5>25</s5>
</fC03>
<fN21>
<s1>227</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 05-0325164 INIST</NO>
<ET>Improved albedo formulation for chemistry transport models based on satellite observations and assimilated snow data and its impact on tropospheric photochemistry</ET>
<AU>LAEPPLE (T.); SCHULTZ (M. G.); LAMARQUE (J. F.); MADRONICH (S.); SHETTER (R. E.); LEFER (B. L.); ATLAS (E.)</AU>
<AF>Max Planck Institute for Meteorology/Hamburg/Allemagne (1 aut., 2 aut.); Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (3 aut., 4 aut., 5 aut., 6 aut., 7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2005; Vol. 110; No. D11; D11308.1-D11308.12; Bibl. 44 ref.</SO>
<LA>Anglais</LA>
<EA>[1] Present parameterizations of the UV surface albedo in global chemistry transport models are generally based on a crude land cover classification and do not account for interannual variations of the snow-covered surface or the large variability in the albedo of snow-covered surfaces. We developed an improved scheme based on 2 years of Moderate-Resolution Imaging Spectroradiometer (MODIS) albedo data, a fine-resolution MODIS land cover map, Global Ozone Monitoring Experiment (GOME) albedo data, and daily assimilated snow cover maps from the European Centre for Medium-Range Weather Forecasts or the National Centers for Environmental Prediction. The new parameterization improves the calculation of photolysis frequencies in particular in the subarctic region as shown by a comparison of the calculated ratio of upwelling and downwelling actinic fluxes with spectral measurements from the Tropospheric Ozone Production About Spring Equinox (TOPSE) campaign (January-May 2000). The impact of surface albedo changes on tropospheric photochemistry has been investigated using the global MOZART-2 chemistry transport model. Compared with the original model version, the surface albedo changes alter the tropospheric oxidizing capacity (OH concentrations) between -20 and +200% locally and +5% in the global annual mean. About half of this change results from a new value adapted for the ocean UV albedo. Locally, NO
<sub>x</sub>
concentrations were found to decrease by up to 40% and were most pronounced where the snow boundary crosses the high-emission regions in Europe, North America, and Asia. The interannual variability of snow and sea ice cover can lead to changes in the global tropospheric OH-concentration of 0.5%, which is of similar magnitude compared with the impacts of varying water vapor, transport, ozone column, and emissions as discussed in previous studies.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Albedo; Transport; Modèle; Observation par satellite; Neige; Troposphère; Photochimie; Paramétrisation; Monde; Occupation sol; Classification; Variation interannuelle; Couverture neige; Variabilité; Fraction fine; Carte occupation sol; Ozone; Surveillance; Etude expérimentale; Prévision météorologique; Constante vitesse; Région Subarctique; Upwelling; Downwelling</FD>
<ED>albedo; transport; models; Satellite observation; snow; troposphere; photochemistry; Parameterization; global; land cover; classification; Interannual variation; Snow cover; Variability; fine-grained materials; land cover maps; ozone; monitoring; experimental studies; Weather forecast; Rate constant; subarctic regions; upwelling; downwelling</ED>
<SD>Albedo; Transporte; Modelo; Observación por satélite; Nieve; Parametrización; Mundo; Clasificación; Variación interanual; Cubierta nieve; Variabilidad; Fracción fina; Ozono; Vigilancia; Previsión meteorológica; Constante velocidad; Región Subártico; Corriente ascendente</SD>
<LO>INIST-3144.354000132267420320</LO>
<ID>05-0325164</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000175 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000175 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0325164
   |texte=   Improved albedo formulation for chemistry transport models based on satellite observations and assimilated snow data and its impact on tropospheric photochemistry
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023